

GDPS 全球这样 - XOps 风向标

暨研运数智化技术峰会

时间: 2025年4月25日-26日 地址: 中国:深圳

指导单位:

深圳位

大模型及DeepSeek在运维 场景中的应用

王鹏

2025-04

王鹏

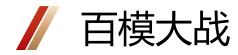
复旦大学计算机科学技术学院,教授 上海数据科学重点实验室,副主任

研究领域:大数据处理、智能运维

在数据库和数据挖掘领域顶级会议和期刊SIGMOD、VLDB、ICDE、SIGKDD、TKDE上发表论文100多篇。主持和参与科技部重点研发计划、国家青年973、自然科学重点、面上基金、上海市科委/经信委的多个项目,以及华为、蚂蚁金服、字节、中国移动等企业的资助项目

目录/contents

- 1 大模型在运维领域应用前景
- 2 面临的挑战
- 3 若干应用场景
- 4 总结



文化/零售/交通

通用大模型

教育

金融

工业

汽车

医疗

大模型在运维领域应用前景

L5 智能运维:实现系统自治,解放体力与脑力

基于已有的经验知识 在不同场景下 自主决策处置

高度自动化+串联智能化

专家经验运维

脚本编辑 , 人工执行

执行:人+脚本

决策:人

L1 - ScriptOps

工具化运维

使用多个独立工具 大部分工作工具化/流程化

执行:人+系统(20%)

决策:人

L2 - ToolsOps

高度自动化+单点智能化

运维工具体系基本建设完成 运维数据体系建设完成

执行:人+系统(80%)

决策:人+系统(20%)

L3 - DevOps

数据化运维

主要运维场景实现流程化免干预

执行:人+系统 (95%)

决策:人+系统(80%)

L4 - DataOps

智能运维

AI分析与决策 自动化工具链+可视化

执行:人+系统(100%)

决策:人+系统 (95%)

L5 - AIOPS

<u>大模型的出现加速了实现终极L5智能运维的步伐</u>

大模型在运维领域的应用前景

大语言模型是IT运维领域新质生产力的重要组成部分,推动数字化转型的颠覆式创新

01

"自然语言"成为连接运维人员、运维工具、运维文档、运维数据的通用接口

02

以"聊天"技术为载体实现人机协同完成运维任务

03

提示词工程、检索增强、智能体逐步在智能运维应用场景实践中凸显成效

应用场星

岗位助手 (近期)

运维知识问答 售后技术支持

数据工具(近中期)

日志摘要/理解 告警摘要/标签 数据注释/标签

岗位培训教练 (近中期)

运维脚本解读/生成 培训题目自动生成/考核

数据探索/分析工具 (近中期)

Text2QL (自然语言查询) Text2API (自然语言工具调用)

专业岗位专家智能体 (中期)

产品厂商智能体 专业领域智能体 (网络、数据库、应用)

虚拟作战室(中期)

运维人员 工具智能体 岗位智能体 协同完成运维任务

基于"聊天"的人机交互协同应急处置

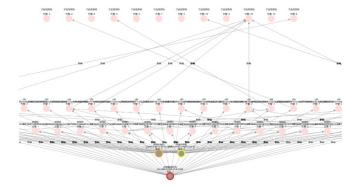
当前生产环境出现严重故障,请做 -个初步分析。

过去半小时内,发生了3456条告 警,涉及50套应用系统、100台物 理机、200台虚拟机、50个数据库 实例、50个中间件实例。 近期无相关生产变更。 正在执行拓扑根因定界分析,请稍 等。

拓扑定界结果如下:

排名	CI/设备	根因分数	描述
1	STARY-47	80	EMC磁盘整列,非常可 疑,所有故障告警都直接 或间接连接该设备
2	STSWT-1	70	光纤交行机
3	STSWT-2	65	光纤交行机

根因分析拓扑图如下:

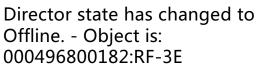


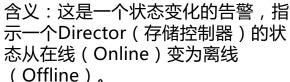
是否需要提供根因组件相关的信息?

请提供TOP1根因相关的异常信息

STRAY-47组件日志中有异常信息:

请解读上述异常日志。





影响: 当Director离线时, 相关的存 储功能可能会受到影响,可能导致数 据不可访问、性能下降或其他存储操 作失败。

本次故障影响范围评估?

手机银行、柜面等交易受影响。期间 成功交易量为0,上周同期交易量约 244587笔。

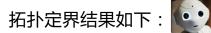
需要生成更详尽的评估报告吗?

基于"聊天"的人机交互协同应急处置

大模型理解用户意图

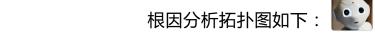
当前生产环境出现严重故障,请做 一个初步分析。

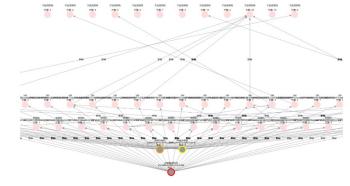
过去半小时内,发生了3456条告 警,涉及50套应用系统、100台物 理机、200台虚拟机、50个数据库 实例、50个中间件实例。 近期无相关生产变更。 正在执行拓扑根因定界分析,请稍



排名	CI/设备	根因分数	描述
1	STARY-47	80	EMC磁盘整列,非常可 疑,所有故障告警都直接 或间接连接该设备
2	STSWT-1	70	光纤交行机
3	STSWT-2	65	光纤交行机

调用拓扑定位工具输出结果并解释





是否需要提供根因组件相关的信息?

提示候选下一步操作

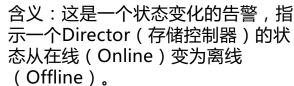
请提供TOP1根因相关的异常信息。

STRAY-47组件日志中有异常信息:

自动查询ES中的设备日志,并过滤其

请解读上述异常日志。

Director state has changed to Offline. - Object is: 000496800182:RF-3E



影响: 当Director离线时, 相关的存 储功能可能会受到影响,可能导致数 据不可访问、性能下降或其他存储操 作失败。

查询厂商文档,对日志进行解释

3

本次故障影响范围评估?

手机银行、柜面等交易受影响。期间 成功交易量为0,上周同期交易量约 244587笔。

需要生成更详尽的评估报告吗?

查询业务指标信息,并汇总结果

大模型在运维场景中的落地仍面临众多挑战

挑战	场景示例
效率	日志解析RAG
准确性	RAGText2SQLAgent工具调用
有效性	• 故障定界/根因分析
扩展性	RAGAgent工具调用

大模型在运维场景中的落地仍面临众多挑战

挑战	场景示例	模型本身能力	模型外能力
效率	日志解析RAG	• 模型推理效率低 • DS更甚	
准确性	RAGText2SQLAgent工具调用	 幻觉/长上下文 简单问题: 90分 复杂问题: 50分	"产品经理"思维模型能力+软件能力融合大模型的整体系
有效性	• 故障定界/根因分析	运维思路需综合全局多源信息	统架构 ・ 以终为始
扩展性	RAGAgent工具调用	• "玩具" vs "真实"场景	

大模型在运维场景中的落地仍面临众多挑战

- "产品经理"思维
 - ▶ 用户是谁
 - ▶ 产品功能、响应速度、输入/输出、并发数的清晰界定
 - 例如:大模型辅助的排障助手
- 模型能力+软件能力
 - ▶ 什么功能利用了大模型的什么能力
 - 软件层面要提供哪些能力,并发、容错、上下文超限等。
- 融合大模型的整体系统架构
 - ▶ 传统的软件架构、设计模式仍需考虑

・以终为始

系统日志广泛用于理解系统运行状态,支持故障检测与诊断。 然而,日志数据常为半结构化文本,难以直接使用。因此,常 常需要首先将日志转化为结构化的"模板"+"变量"的形 式,一方面可以将日志序列简化为模板 ID 序列,降低分析复杂 度,另一方面结构化的表达形式也更便于进行统一与自动化处 理分析。因此日志解析常常作为日志处理的必要前置任务。 00d Creating NT trans (seq 13), object [6] 141 double-hummer alignment exceptions instruction address: 0x00004ed8

提取变量,保留常量

<*> Creating NT trans (seq <*>), object [<*>]

<*> double-hummer alignment exceptions instruction address: <*>

1.传统方法

通过规则匹配或统计特征(如频率、 长度)进行解析,处理速度快,但缺 乏语义理解能力,难以准确区分常量 与变量,进而影响解析性能

2.深度学习方法

将解析建模为分类任务,识别日志中 的变量位置,能提取一定语义信息, 但依赖大量标注数据对模型进行训练, 泛化能力有限

3.LLM方法

利用大语言模型强大的语义理解能力进行解析,精度高,但处理过程依赖 LLM调用来进行解析,效率低,难以 满足在线解析的效率要求

关键瓶颈

LLM调用开销

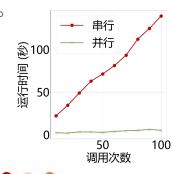
相较于传统方法与深度学习方法, 每调用一次LLM的时间开销巨大。

串行解析

当前一条日志解析完成后才开始 处理下一条,导致大量时间等待

LLM返回结果。

然而,大多数 LLM的部署方 法支持并行调 用,时间接近 一次调用。



基于LLM的日志解析的常见操作

模板匹配

利用前缀树等结构进行快速匹配

是否涉及LLM: 否 速度: 快

模板抽取

利用LLM对给定日志生成模板

是否涉及LLM:是 速度:慢

模板更新

将当前日志合并已有模板进行更新

是否涉及LLM: 是 速度: 较慢

关键挑战

时间不一致

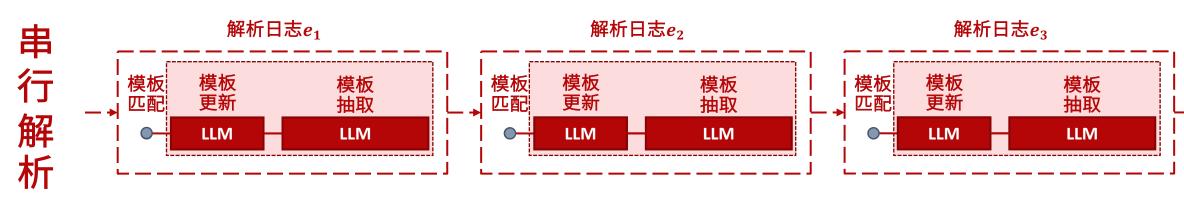
不同操作的速度差异,导致快速操作被迫等待,降低整体效率。

解析依赖顺序

现有方法存在顺序依赖性,对于 前面日志的解析,可能会影响后 面日志解析的结果,直接并行会 打乱这种顺序依赖。

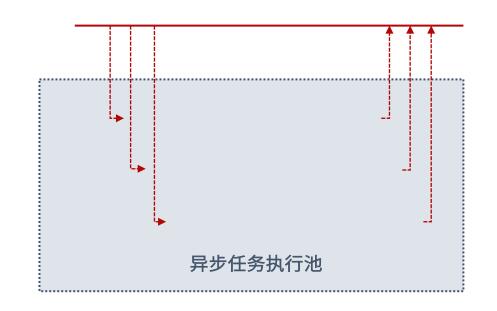
重复解析

相似日志同时处理,模板尚未缓 存进前缀树,导致重复触发LLM 调用,资源浪费。



→ 时间轴

异步解析



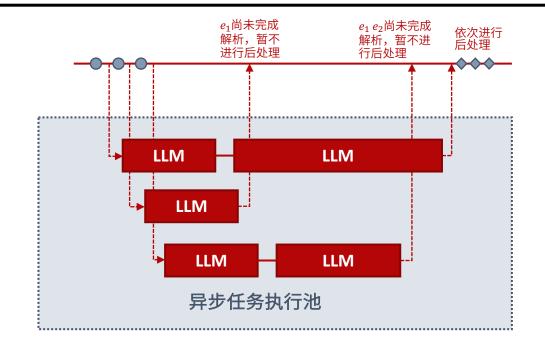
问题: 串行执行, 时间不一致

解决方案: 异步并行

涉及LLM的操作统一进行异步并行执行,剩余操作包括 模板匹配等,均在主流程中串行执行。在充分利用并行 优势的情况下,规避不同操作时间不一致带来的延迟。

▶ 时间轴

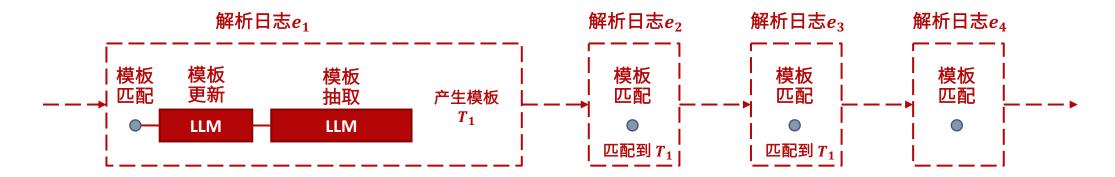
异步解析



问题:解析顺序依赖

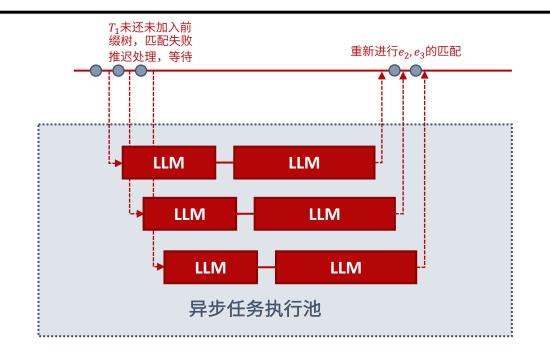
解决方案:统一调度

当LLM调用在异步执行池中完成时,不立即进行后序处理,而是交由全局的任务管理模块进行后处理,确定其后处理顺序,以保证顺序依赖。考虑到LLM操作和代码操作的巨大时间差异,这样推迟的成本非常小。



▶ 时间轴

异步解析



问题: 重复解析

解决方案: 任务生成管理

引入等待机制,判断解析当前日志即将生成的LLM任务是否潜在与异步执行池中已有的任务潜在重叠,如果有重叠的可能性,则让当前任务"等待",待前序任务完成,再重新开启对于当前任务的解析。

异步并行

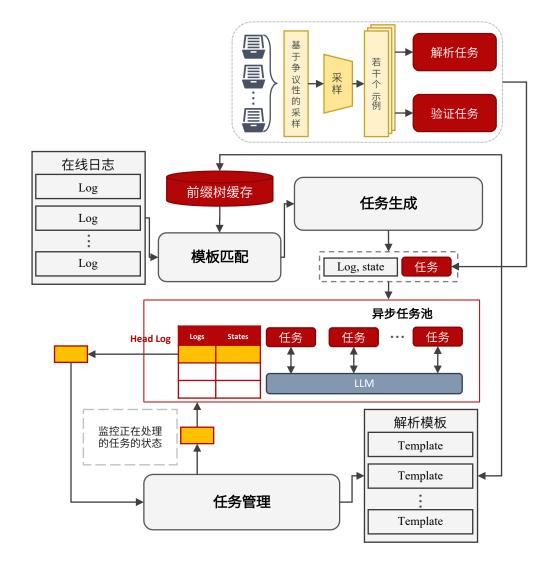
将任务异步提交 至大模型,允许 任务独立返回, 从而解决了复杂 日志拖慢整体进 度的问题,提升 整体效率。

统一调度

解析任务与调度 逻辑解耦,日志 动态分配任务, 调度系统统一管 理任务顺序与依赖,确保语义一致性和稳定性。

生成管理

通过等待机制避 免重复调用大模型,对相似日志 在模板尚未返回 前暂缓处理,减 少冗余生成任务 提升效率。

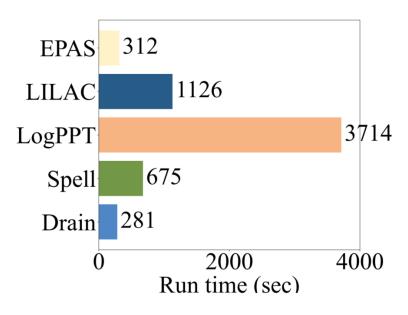


· EPAS准确性均高于传统方法和现有基于大模型的方法

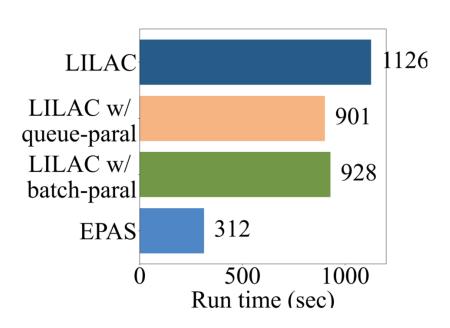
Dataset		Drai	n			Spel	1			Log	PPT			LII	LAC			EF	PAS	
Dataset	GA	FGA	PA	FTA	GA	FGA	PA	FTA	GA	FGA	PA	FTA	GA	FGA	PA	FTA	GA	FGA	PA	FTA
Apache	100.0	100.0	72.7	51.7	100.0	100.0	25.0	17.2	78.6	48.4	95.2	35.2	100.0	100.0	99.9	86.2	100.0	100.0	99.8	89.7
BGL	91.9	62.4	40.7	19.3	67.7	1.6	23.5	0.2	31.1	51.9	85.5	50.9	90.5	87.3	89.6	76.4	96.9	90.9	95.3	84.0
Hadoop	92.1	78.5	54.1	38.4	44.9	5.1	11.6	1.7	53.3	57.0	72.5	46.2	66.5	91.7	60.9	76.5	99.0	97.3	94.8	85.1
HDFS	99.9	93.5	62.1	60.9	96.1	62.5	29.0	22.5	69.4	38.5	89.7	30.8	100.0	78.0	100.0	78.0	99.9	76.2	96.7	64.3
HealthApp	86.2	1.0	31.2	0.4	65.2	1.4	16.2	0.5	83.9	86.3	98.7	78.7	100.0	98.1	98.8	91.8	99.8	97.1	99.6	90.8
HPC	79.3	30.9	72.1	15.2	59.4	26.4	49.9	14.3	78.2	81.2	99.7	76.2	87.2	95.9	64.0	83.8	85.8	91.4	77.2	82.1
Linux	68.6	77.8	11.1	25.9	62.3	78.4	3.3	10.8	20.0	68.6	62.1	39.9	95.9	87.1	87.2	55.9	97.0	83.7	95.2	70.2
Mac	76.1	22.9	35.7	6.9	76.0	28.3	6.9	3.3	53.6	45.9	41.0	27.5	78.0	84.0	58.9	55.1	95.1	90.0	81.0	63.3
OpenSSH	70.7	87.2	58.6	48.7	61.6	42.6	19.3	9.8	27.8	11.5	71.3	14.7	74.6	74.3	74.6	71.4	78.0	96.1	77.9	85.7
OpenStack	75.2	0.7	2.9	0.2	78.1	0.1	0.0	0.0	53.4	92.9	40.8	78.8	100.0	100.0	99.0	93.8	100.0	100.0	100.0	95.8
Proxifier	69.2	20.6	68.8	17.6	52.1	4.0	48.0	1.1	51.0	75.0	99.3	91.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Spark	88.8	86.1	39.4	41.2	43.2	31.6	40.5	21.1	45.0	38.3	95.4	33.1	96.8	83.4	96.6	63.2	100.0	91.4	99.9	78.0
Thunderbird	83.1	23.7	21.6	7.1	42.9	12.9	12.1	2.8	41.6	33.4	28.3	13.1	79.7	79.3	64.4	52.9	89.9	85.4	69.7	60.9
Zookeeper	99.4	90.4	84.3	61.4	98.7	57.8	78.9	28.1	97.3	90.3	84.3	75.3	100.0	96.7	84.9	86.8	99.8	98.3	99.6	92.7
Average	84.3	55.4	46.8	28.2	67.7	32.3	26.0	9.5	56.0	58.5	76.0	49.4	90.7	89.7	84.2	76.6	95.8	92.7	91.9	81.6

• EPAS: Efficient Online Log Parsing via Asynchronous Scheduling of LLM Queries. In ICDE 2025.

· EPAS性能远优于现有基于大模型的方法,优于传统方法Spell



(a) Efficiency comparison.



(b) Evaluation on naive parallel.

• EPAS: Efficient Online Log Parsing via Asynchronous Scheduling of LLM Queries. In ICDE 2025.

Text2SQL

Text2SQL技术旨在将自然语言形式的查询自动转换为数据库上的结构化 查询语言(SQL)。鉴于数据库在各应用领域的广泛应用,该技术被学术 界和工业界广泛关注

总体而言,Text2SQL技术路线分为两类:基于精调小模型、基于大模型

数据的语义理解

自然语言描述的查询存有模糊性,加 之算法对数据的理解也存在偏差,两 者叠加,使数据语义理解变得尤为重 要。

领域知识的依赖

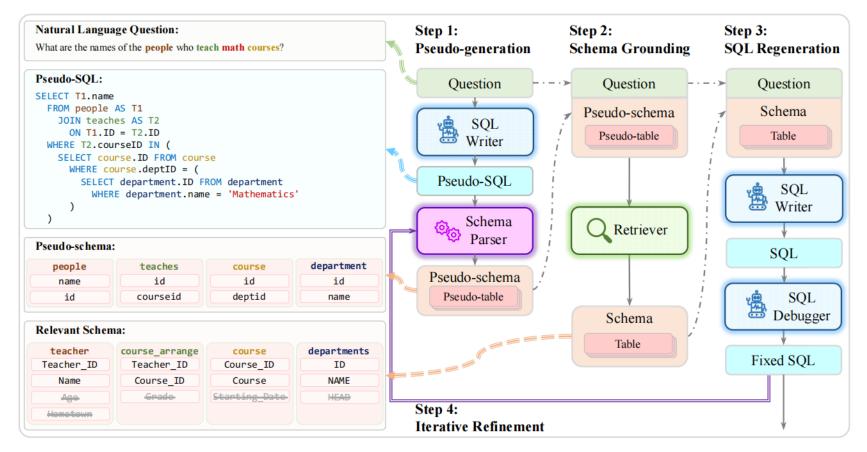
用户的提问可能包含行业黑话或特定的领域知识(如银行业务中的"头寸",不同企业的"财年")。

操作逻辑的复杂性

数据库操作的固有复杂性使得难SQL 的翻译效果不佳(如嵌套查询、复杂 的聚集、多表连接等)。

基于大模型:Gen-SQL

- □ **先生成再检索**的范式
- □利用大模型预训练过程中取得的先验知识,先根据问题猜测所需表结构,再用向量检索器召回相关表



• Gen-SQL: Efficient Text-to-SQL By Bridging Natural Language Question And Database Schema With Pseudo-Schema, in COLING 2025

Text2SQL技术 - PURPLE

□ LLM具有较好的语义理解能力(也有幻觉),直接利用LLM直接翻译,效果不佳;

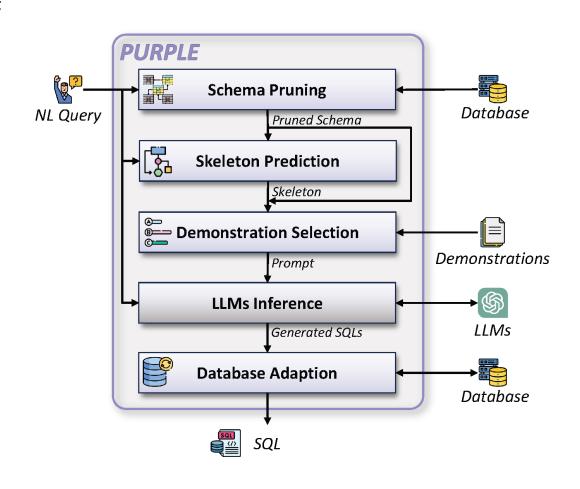
对LLM精细化控制

控制大模型做其擅长的事情,如让它做选择题(从候选集中选SQL框架)

为LLM提供SQL算子组合

提供一系列的SQL算子组合(来自各种各样应用场景),让其进行选择

- PURPLE: Making a Large Language Model a Better SQL Writer. In ICDE 2024
- The Power of Constraints in Natural Language to SQL Translation. Accepted by VLDB 2025.



Text2SQL+RAG:三层索引检索

• **预处理阶段**:以表、列、值为粒度构建三层树状索引

• **推理阶段:**假如输入问题与表数据、列数据和值数据的相关度计算分别为 a、b 和 c, 那么该路径上的表分数 S_t 、列分数 S_c 和值分数 S_v 分别为:

$$S_t = a$$

$$S_c = k_{11}a + k_{12}b$$

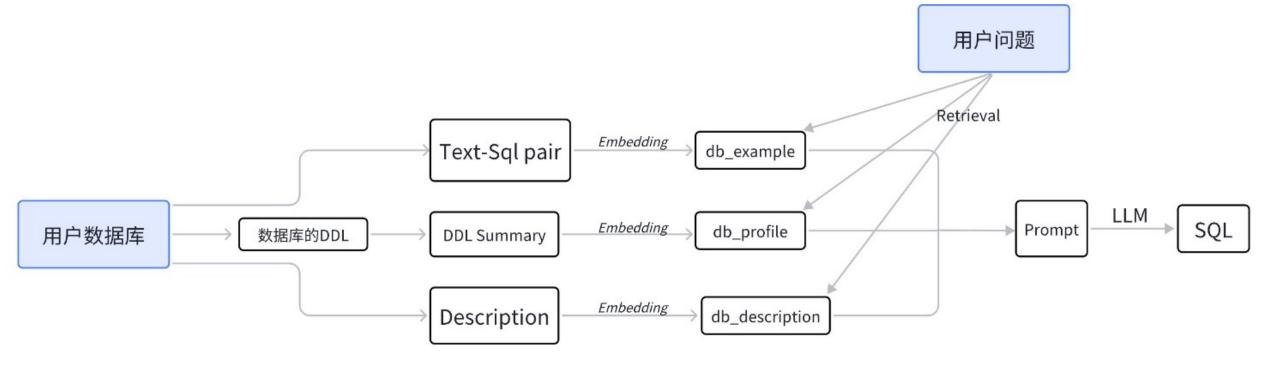
$$S_v = k_{21}a + k_{22}b + k_{23}c$$

• 实验结果表明,三层索引检索通过过滤数据库的表、列、值信息,可以有效增强大模型生成SQL的准确率

方法	千问 72b	ChatGPT-3.5-turbo	ChatGPT-4		
实体编码检索方法	82.1	83.5	90.8		
不带检索默认方法	65.3	72.7	82.3		
表粒度检索方法	60.5	67.0	79.4		
列粒度检索方法	63.2	70.2	80.8		
值粒度检索方法	55.1	63.9	78.8		
DAIL-SQL	N/A	78.1	86.6		
PET-SQL	N/A	N/A	85.5		
CHESS	N/A	N/A	87.2		
MiniSeek	N/A	N/A	91.2		

Text2SQL+RAG:外部知识反馈

- 方法
 - 补充和业务相关的专家知识
 - 描述性知识(正确的查询思路,正确的字段映射)
 - 可参考的正确查询样例
- 分而治之,对于复杂的问题,分为多个子问题,生成子查询后聚合



Text2SQL+RAG:外部知识反馈

描述性知识(Description)

sse_audit_online中的**字段terminal主要有三 种取值: "and", "ios", "others"**, 其中 "and"即安卓

- A 查询产品为L1,终端为安卓,金桥机房的根据不同的券商、信息商、产品,对应每个国家以及每个城市的用户连接数
- 用户想要了解产品为L1,终端为安卓,且在金桥机房的情况下,不同券商、信息商、产品在每个国家和城市的用户连接数。这需要我们对数据进行分组并计算每个分组的用户去重连接数。

Data SQL

```
SELECT
 broker.
 vendor.
 product,
 country,
 COUNT(DISTINCT uid) AS user connections
FROM
 scene1.sse audit online
WHERE
 product = '11'
 AND terminal = 'and'
 AND home = '金桥'
GROUP BY
 broker,
 vendor,
 product,
 country,
ORDER BY
 user connections DESC
```


Text2SQL+RAG:外部知识反馈

Text-SQL对:

Text: 查询用户 ID 为admin的用户在 2021年1月1日至2023年1月31日之间的类型为"变更管理"的待办任务

```
SQL:
```

```
SELECT GROUP_CONCAT(id) AS menu_ids
FROM bpm_mo_menu
WHERE parentid IN (
SELECT getModelChildrenId(id)
FROM menu_id
)
```

- R 查询用户 ID 为admin的用户在 2021年1月1日至2023年1月31日之间的类型为"服务请求"的待办任务
- 为了查询用户ID为admin的用户在指定日期范围内的类型为'服务请求'的待办任务,我需要从act_ru_task表中获取任务信息,同时连接bpm_process_fast_query表以获取流程的标题和类型,以及act_ru_identitylink表以获取处理人信息。我将使用WITH子句来找到'服务请求'相关的菜单ID,然后通过JOIN子句将这些信息与任务表关联。最后,我将使用WHERE子句来过滤出admin的待办任务和指定日期范围内的记录。

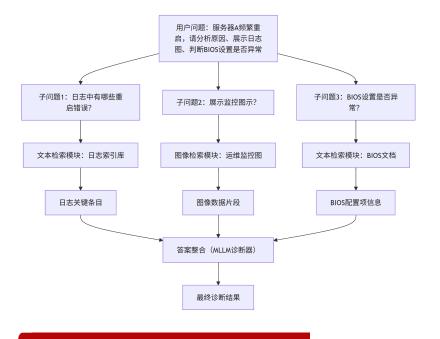
Data SQL

```
menu_id AS (
  SELECT
   bpm mo menu
    name = '服务请求'
sub menu ids AS (
   GROUP CONCAT(id) AS menu ids
   bpm mo menu
    parentid IN (
        getModelChildrenId (id)
        menu id
```


基于静态DAG的多模态检索增强

多模态检索增强

检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合语言模型和外部知识库的方法,能够显著提升大模型在问答、对话和文档理解中的知识覆盖率和回答准确性。然而传统RAG往往仅依赖"一轮检索+一轮生成"的流程,难以处理具有多跳逻辑、模态切换与强依赖结构的问题。我们提出一种基于静态有向无环图(DAG)对于用户的问题进行结构化分解,通过规划子问题之间的依赖关系,指导多模态检索器高效调度并且融合方案,提高问答的结构可控性、准确性以及过程可解释性。



传统RAG方法

没有结构规划,统一一次性检索,容 易遗漏关键信息,难以应对多跳复杂 问题。

动态规划的方法

动态调整路径,但是执行通常是线性, 较为复杂效率较低;同时在调用链过长 时LLM容易偏离原始查询意图。

基于静态DAG的方法

拆解子问题,规划依赖关系,可以并 行解决子问题,信息整合准确,查询 中不容易出现意图偏移。

静态DAG在复杂多模态问答中的应用流程与优势

静态DAG执行流程

1.用户提出问题

例如: 查询设备功能、查看图云等

2.LLM进行DAG规划

根据问题复杂度进行结构化拆分

3.多模态执行检索

每个子问题根据内容执行对应的模 态检索

4.答案整合和输出

整合所依赖的子问题结果得到答案

优势分析

结构清晰

合理拆解复杂问题提前规划

调度高效

子问题可以并行执行提高响应速度

自适应模态检索

子问题选择最合适的模态检索方式

可解释性强

每一步探索路径清晰可追朔,有利于故障定位和结果验证。

关键挑战

1.多模态异构信息分散

图像、文本、表格等信息来源往往 不同,统一检索难度大

2.多跳推理路径复杂

问题隐含逻辑依赖关系,不易一步 检索命中目标

3.复杂问题难以解答

LLM难以直接一步到位处理复杂问题中的依赖给出正确答案

静态DAG在复杂多模态问答中的应用流程与优势

动态规划的方法

- 效率问题
- "意图偏离"问题

基于静态DAG的方法

- · 训练LLM,自动生成多个子问题
- 意图一致性的度量
- 样本分布一致性的考虑

静态DAG在复杂多模态问答中的应用流程与优势

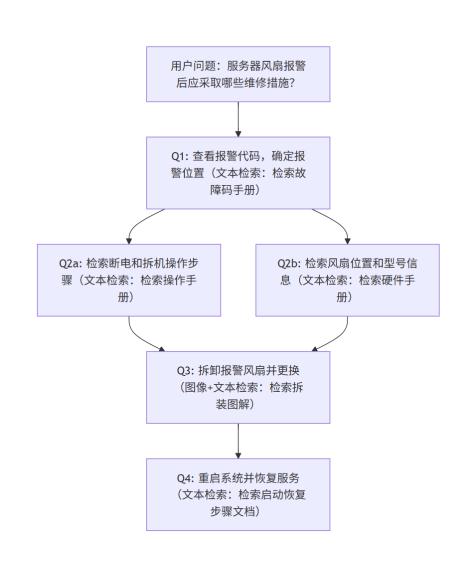
实验结果对比

我们在MMQA这个多模态多跳问答 数据集上验证我们方法的准确性

方法	Exact Match	F1 Score
Binder	51.0	57.1
MMHQA-ICL	54.8	65.8
HPROPRO	59.0	66.7
Ours	60.61	69.65

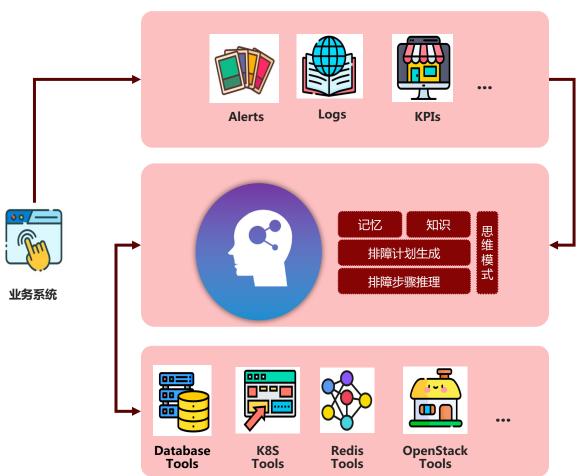
Exact Match: 回答与标准答案是否完全一致;

F1 Score:回答与标准答案的词级重合度(调和平均)。

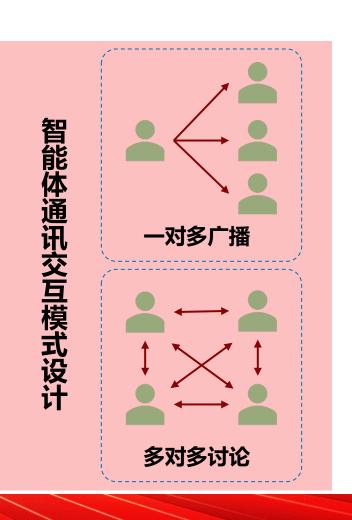


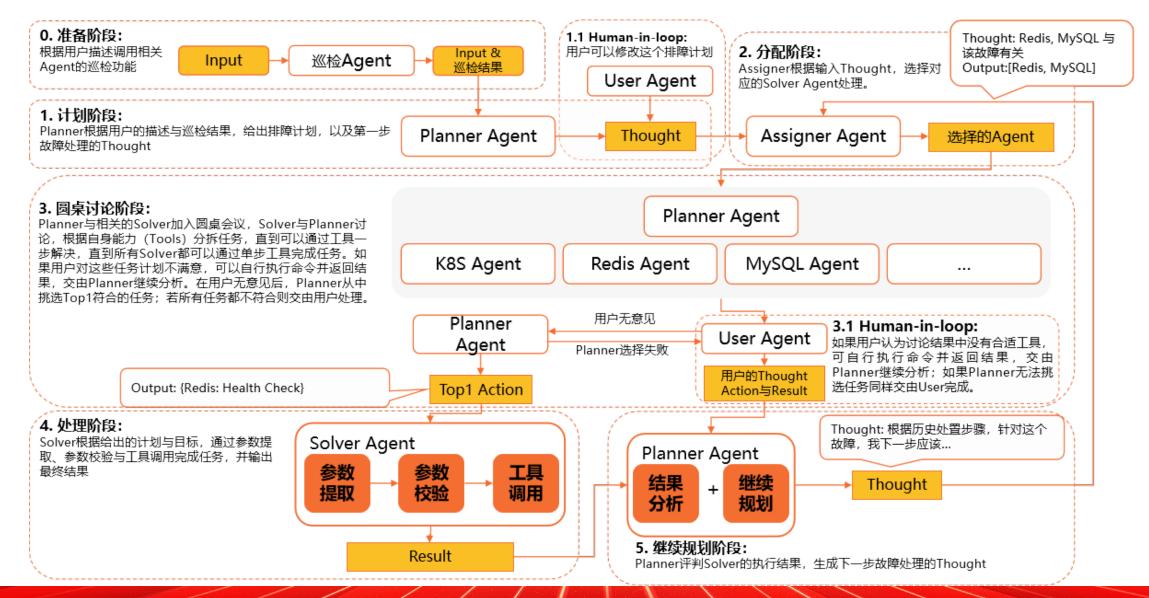
- 运维大模型训练:通过收集故障处置过程中运维专家的思考、操作历史记录,训练运维大模型,使 其可以构建出类似于运维专家的排障树思维,通过Agent规划运维步骤,并调用相关工具
- 多智能体交互框架:多智能体的交互框架,使其能够协作完成复杂的运维任务

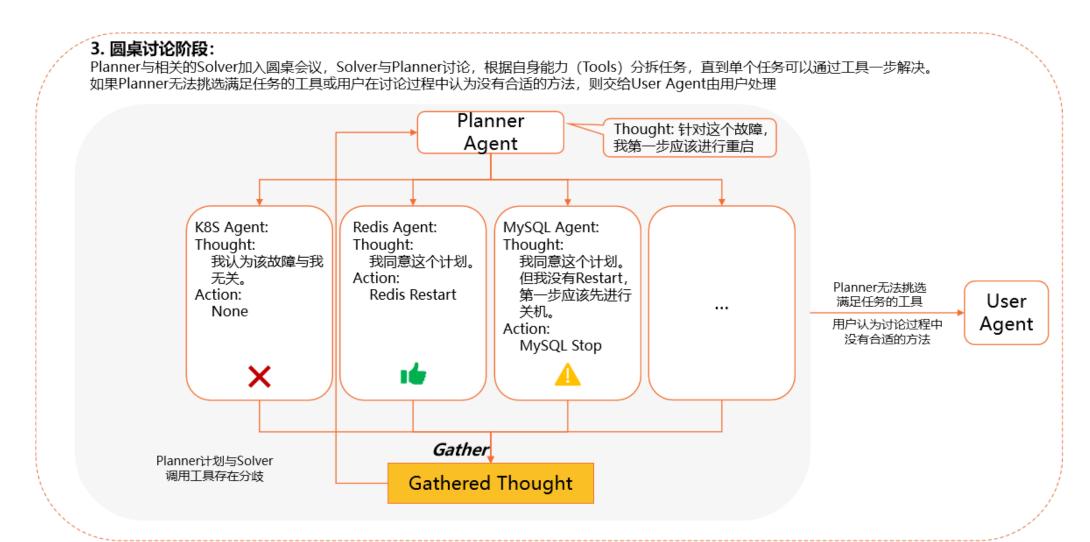
- 智能体语料样本准备策略
- 模型训练方案
- 运维流程数据范式: 符合 Agent的训练标准,兼顾运维 专家的编写习惯
- 运维流程数据处理:自动 化处理收集到的运维流程数据, 完成格式校验、内容校验、 Prompt填充、样本转换等步骤
- 智能体增强训练:利用专家 运维流程数据,选取合适的基 座模型进行训练,研究不同训 练因素的影响



- 构建复杂多智能体的通讯和交互组件,细分不同的智能体角色与能力
- 设计具体通讯和交互模式类型与内容
- 智能体角色与能力设计: 细分不同智能体的角色与能力, 提高针对复杂任务的规划解决能力
- 智能体通讯交互内容设计: 规范智能体的通讯交互的内容与格式, 保证信息传递稳定性和准确性
- 智能体通讯交互模式设计:实现 复杂通讯模式,包括一对多广播、多对 多讨论等协作模式,提高整体智能







- 大模型落地仍面临众多问题
 - "产品经理"思维
 - 模型能力+软件能力
 - 融合大模型的整体系统架构
 - 以终为始
- 大模型只是工具,不能为了大模型而大模型
 - 如同AIOps算法,场景、数据、迭代永远重要!

Thanks

高效运维社区 BizDevOps 社区

荣誉出品

T H A N K S

感谢大家观看

2025.4